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Large Data Need Large Machines

"Shared something." Kim Keeton. Keynote, FAST2017
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Managing Large Main Memory
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Allocation Patterns

Allocation Patterns

• Unstructured data stores 
• Heaps, buddy list, slab cache 
• Evolving data: fragmentation 

• Log allocation — scalability issues
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Nibble: Concurrent Log-Based KVS
• In-process KVS, high concurrency 

• Concurrent index (partitioned) 

• Multi-head log (partitioned) 

• Consistency via hardware epoch 

• Per-socket isolation 

• Index, compaction, allocation 

• Written in ~4000 lines of Rust 

• https://www.rust-lang.org
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Optimistic Concurrency Index
• Open addressing with linear probing 

• 8-byte keys, 8-byte values 

• Buckets guarded by atomic version 

• Lookups record twice: before and 
after reading value. Retry if changed 

• Writer locks with cmpxchg to odd, 
and again to even value to release 

• Over-allocate virtual memory 

• Grow by faulting in physical pages

1

bucket
Index

virtually allocated pages

grow 2x

bucket

version k k… e e…
Keys Entries

socket vaddr

Index

bucket entry

16-bit 48-bit
64-bit

4 Cache Lines

…

15 keys, entries 
per bucket

log-resident 
object

page faultmove



Alex Merritt VLDB 2018 Wed. 29 August

Multi-head Logs for Parallel Writes

• Memory allocated as blocks 

• Segment = container of blocks 

• Multiple heads: one per core 

• Thread append to core's head 
segment via (rdtscp)
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Multi-head Logs for Parallel Writes

• Full head is closed and replaced 
with new segment
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Multi-head Logs for Parallel Writes

• Compaction relocates objects in 
closed segments 

• Each compaction thread works on 
dedicated segments 

• Parallel sorting and compaction 

• Segment selection (compaction) 
based on cost-benefit metric
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Concurrent Reference Tracking
• Application thread assigned unique entry 

• On PUT, GET, DEL thread records local 
core TSC: eop 

• On return, thread records NIL (0) 

• No atomics, no locking 

• Compacted Segments are stamped: eseg 

• Segments released when 
             eseg < min(EpochTable)

EpochTable3

…

TSC
CPU Core

}
Compaction Thread

min()

TSC
CPU Core

Application Threads

Entries are cacheline-sized
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Nibble: Concurrent Log-Based KVS
• In-process KVS, high concurrency 

• Concurrent index (partitioned) 

• Multi-head log (partitioned) 

• Consistency via hardware epoch 

• Per-socket isolation 

• Index, compaction, allocation 

• Written in ~4000 lines of Rust 

• https://www.rust-lang.org
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Goals of Evaluation
• How far do modern systems scale? 

• Real measurements on enormous machine 
• Broader workloads: static and dynamic data 

• Push concurrency of log-allocation: 
• How we compare — at low utilization, and at high? 
• Can we handle pure writes? 

• Did our design decisions make sense?
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Evaluation Overview
HPE SuperDome X — 12 TiB DRAM, 16 Intel Xeon E7-2890 v2 (240 cores)

System Description Modifications for Evaluation
Redis In-memory data structure store No parallelism. Launch 64 instances.

RAMCloud In-memory log-structured KVS Extract ObjectManager. 1 and 240 instances.
Masstree Concurrent OCC B+-tree Extracted tree for use.

MICA Concurrent + partitioned KVS EREW mode. SIPHash.
Nibble Scalable log-based KVS 8 comp. threads. 64 KiB block 32 MiB segment

Workload Type Description

Fragmentation Dynamic Cycle allocate / release. Six patterns.

Postmark Trace Dynamic 500-4096 bytes, 20% ins/del, 183m. ops., 5.7 GiB/thread

YCSB Static 1 TiB (1bn. 1 KiB objects), various patterns.



Alex Merritt VLDB 2018 Wed. 29 August

Static Data Sets
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... and with less memory
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Revisit Memory Fragmentation

• Compaction resists fragmentation 

• Nibble ≤ 10% additional memory 

• MICA, Redis, Masstree ca. 1.5 - 2x 

• P1 is high as objects are small 

• Metadata per object is fixed
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Dynamic Data Sets

• Captured trace from TableFS + Postmark 

• Object sizes 500 - 4096 bytes 

• 10% insertion 10% deletion

• 18mil. objects, 5.7 GiB working set 

• Each thread executes trace in isolation 

• Measure total time to complete
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Micro-Evaluation
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Global PUT

Local PUT

• 20x greater throughput

• TSC auto-increments 

• 30ns to read 

• No synchronization

• 1.75x - 2.48x

• 94% of global ops are 
remote

Uniform YCSB 240 threads (Mix is a 50:50 ratio of PUT and GET)

How much does TSC help? Why exclusively write local memory?
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Nibble — Summary

Future Work
• Multi-object transactions 
• Data > DRAM 
• Main-memory file systems

https://github.com/gtkernel/nibble-lsm
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Backup Slides
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Can We Improve Performance at High Capacity?

• All PUT overwrite existing objects 

• No subsequent compaction 

• Performance similar to MICA 

• Subtle difference is updates in 
Nibble-2 cannot be done to local 
memory each time

smaug3. Same YCSB configuration as in 
prior experiments. 135 threads 1 KiB objects 

8 compaction threads.
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Related Work
Scalable / Concurrent Object Stores 
MICA [NSDI’14] 
Masstree [Eurosys’12] 
OpLog [MIT-TR’14] 
CPHash [MIT-TR’11] 
Cuckoo [EuroSys’14] 
Anna [ICDE’18] 
FASTER [SIGMOD'18] 

Log-structured Memory 
Memshare [ATC’17] 
LSM [FAST’14] 
Bwtree [ICDE’13] 
cLSM [EuroSys’15] 
TRIAD [ATC’17] 
LogNVMM [ATC’17] 

Memory bandwidth 
Shoal [ATC’15] 
Carrefour [ASPLOS’13] 
BATMAN [GT-TR’15] 

Scalability / Concurrent Programming 
CST Locks [ATC’17] 
ASCY [SOSP’13, ASPLOS’15] 
Optik [PPoP’16] 
Broadcast Trees [OSDI’16]
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Static Data Sets — YCSB Zipfian
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Multi-Head

• How useful to use multiple heads? 

• Vary 1 to 15 heads 

• Choose head randomly, or assign 
head to core (choose with rdtscp) 

• +15% with core-local head vs random
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Effects of Block and Segment Sizes
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• Small blocks are very costly 

• Destructing and constructing segments 

• Objects split into many pieces 

• Segment sizes have interesting “sweet spot” 

• Too small — frequent recycling 

• Too big — greater latency to compact
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Effects of Block and Segment Sizes
64-byte objects

• Small blocks are very costly 

• Destructing and constructing segments 

• Objects split into many pieces 

• Segment sizes have interesting “sweet spot” 

• Too small — frequent recycling 

• Too big — greater latency to compact8 9 10 11 12 13 14 15 16 17 18 19 20
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Effect of Compaction Parallelism

• Parallelism in compaction helps 
significantly 

• 20x compared to a single thread 

• Diminishing returns 

• In Nibble, segments waiting for 
reclamation are assigned uniformly 
among threads, to balance load
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smaug3. Each CPU has 18 cores, 
14 used by client threads.
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Can Memory Copying Mechanisms Help?
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• We compare GNU libc memcpy with x86 instruction rep movsb 

• Left two figures measure unloaded latency as region size varies 

• Allocate large region and randomly select source and 
destination offsets on local memory — 7 iterations 

• Right figure shows end-to-end impact on use

typical object size
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Bandwidth Saturation — Index
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Tracking Segment Sizes

• Each log has table of Segment 
metadata 

• size attribute managed atomically 

• Segment size monotonically 
decreases after closed

…
SegmentInfo Table

PUT(key: 42, va: buf*, len: 100)

decr. 100
append

1
2

3 incr. 100
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Candidate Segment Selection

• Recalculate when segment size changes 
• Obtained from SegmentInfo table 

• Compaction selects segment based on: age, current capacit 
• Each socket has multiple threads 

• Closed segments assigned round-robin 
• Equal load, and trivially parallelize candidate selection


