
Concurrent Log-Structured Memory
for Many-Core Key-Value Stores

Alex Merritt§ Ada Gavrilovska Yuan Chen† Dejan Milojicic
Georgia Institute of Technology Hewlett Packard Labs

mail@alexmerritt.de ada@cc.gatech.edu yuan.chen@jd.com dejan.milojicic@hpe.com

§Now at Intel. Work done as part of PhD at GT. †Now at JD Silicon Valley R&D center.

VLDB 2018
Rio de Janeiro, Brazil

mailto:mail@alexmerritt.de

Alex Merritt VLDB 2018 Wed. 29 August

Large Data Need Large Machines

"Shared something." Kim Keeton. Keynote, FAST2017

CPU CPU

XNC

CPU CPUR R R R

XNC

CPU CPU

XNC

CPU CPUR R R R

XNC

cross-node
controllers

Single-machine multi-socket ccNUMA Multi-server non-coherent NUMA
HPE "PREMA" architecture. 2010.

D
RA

M

Alex Merritt VLDB 2018 Wed. 29 August

Managing Large Main Memory

objectlog

head

index

key

immutable

hoard jemalloc tcmallocSuper
Malloc

ptmalloc2
1.0
1.5
2.0

3.5
3.0
2.5

4.0

Memory Usage
(normalized)

Label Pattern Label Pattern
P1 60 ➟ 70 B P4 1 ➟ 10 KiB
P2 1000 ➟ 1024 B P5 10 ➟ 100 KiB
P3 1000 ➟ 1030 B P6 500 ➟ 600 KiB

P1
P2
P3

P4
P5
P6

Allocation Patterns

Allocation Patterns

• Unstructured data stores
• Heaps, buddy list, slab cache
• Evolving data: fragmentation

• Log allocation — scalability issues

Alex Merritt VLDB 2018 Wed. 29 August

Nibble: Concurrent Log-Based KVS
• In-process KVS, high concurrency

• Concurrent index (partitioned)

• Multi-head log (partitioned)

• Consistency via hardware epoch

• Per-socket isolation

• Index, compaction, allocation

• Written in ~4000 lines of Rust

• https://www.rust-lang.org

release
queue

index

logs

socket 0 socket 1 socket 2

compaction

hash(key)
epoch
table

reallocated

3

1

2

Alex Merritt VLDB 2018 Wed. 29 August

Optimistic Concurrency Index
• Open addressing with linear probing

• 8-byte keys, 8-byte values

• Buckets guarded by atomic version

• Lookups record twice: before and
after reading value. Retry if changed

• Writer locks with cmpxchg to odd,
and again to even value to release

• Over-allocate virtual memory

• Grow by faulting in physical pages

1

bucket
Index

virtually allocated pages

grow 2x

bucket

version k k… e e…
Keys Entries

socket vaddr

Index

bucket entry

16-bit 48-bit
64-bit

4 Cache Lines

…

15 keys, entries
per bucket

log-resident
object

page faultmove

Alex Merritt VLDB 2018 Wed. 29 August

Multi-head Logs for Parallel Writes

• Memory allocated as blocks

• Segment = container of blocks

• Multiple heads: one per core

• Thread append to core's head
segment via (rdtscp)

2head
segments

core 0
core 1
core 2

block pool

M
ul

ti-
he

ad
 L

og

Alex Merritt VLDB 2018 Wed. 29 August

Multi-head Logs for Parallel Writes

• Full head is closed and replaced
with new segment

closed
segments

head
segments

core 0
core 1
core 2

block pool

roll over new

M
ul

ti-
he

ad
 L

og

2

Alex Merritt VLDB 2018 Wed. 29 August

Multi-head Logs for Parallel Writes

• Compaction relocates objects in
closed segments

• Each compaction thread works on
dedicated segments

• Parallel sorting and compaction

• Segment selection (compaction)
based on cost-benefit metric

closed
segments

head
segments

core 0
core 1
core 2

reclamation
block pool

roll over new

M
ul

ti-
he

ad
 L

og

compaction

epoch
table

2

Alex Merritt VLDB 2018 Wed. 29 August

Concurrent Reference Tracking
• Application thread assigned unique entry

• On PUT, GET, DEL thread records local
core TSC: eop

• On return, thread records NIL (0)

• No atomics, no locking

• Compacted Segments are stamped: eseg

• Segments released when
 eseg < min(EpochTable)

EpochTable3

…

TSC
CPU Core

}
Compaction Thread

min()

TSC
CPU Core

Application Threads

Entries are cacheline-sized

Alex Merritt VLDB 2018 Wed. 29 August

Nibble: Concurrent Log-Based KVS
• In-process KVS, high concurrency

• Concurrent index (partitioned)

• Multi-head log (partitioned)

• Consistency via hardware epoch

• Per-socket isolation

• Index, compaction, allocation

• Written in ~4000 lines of Rust

• https://www.rust-lang.org

release
queue

index

logs

socket 0 socket 1 socket 2

compaction

hash(key)
epoch
table

reallocated

1

2

3

Alex Merritt VLDB 2018 Wed. 29 August

Goals of Evaluation
• How far do modern systems scale?

• Real measurements on enormous machine
• Broader workloads: static and dynamic data

• Push concurrency of log-allocation:
• How we compare — at low utilization, and at high?
• Can we handle pure writes?

• Did our design decisions make sense?

Alex Merritt VLDB 2018 Wed. 29 August

Evaluation Overview
HPE SuperDome X — 12 TiB DRAM, 16 Intel Xeon E7-2890 v2 (240 cores)

System Description Modifications for Evaluation
Redis In-memory data structure store No parallelism. Launch 64 instances.

RAMCloud In-memory log-structured KVS Extract ObjectManager. 1 and 240 instances.
Masstree Concurrent OCC B+-tree Extracted tree for use.

MICA Concurrent + partitioned KVS EREW mode. SIPHash.
Nibble Scalable log-based KVS 8 comp. threads. 64 KiB block 32 MiB segment

Workload Type Description

Fragmentation Dynamic Cycle allocate / release. Six patterns.

Postmark Trace Dynamic 500-4096 bytes, 20% ins/del, 183m. ops., 5.7 GiB/thread

YCSB Static 1 TiB (1bn. 1 KiB objects), various patterns.

Alex Merritt VLDB 2018 Wed. 29 August

Static Data Sets

10
0

20
0

0

20

40

60

80

100

T
hr

ou
gh

pu
t

[m
il.

op
/s

ec
]

Nibble

10
0

20
0

RAMCloud [1]

RAMCloud [240]

10
0

20
0

MICA

Masstree

10
0

20
0

Thread Count

100% RD 95% RD 5% WR 50% RD 50% WR 100% WR

YCSB Uniform Distribution: 1bn. (230) 1KiB objects = 1 TiB, 12% capacity.
YCSB Zipfian discussed in paper.

Alex Merritt VLDB 2018 Wed. 29 August

... and with less memory

0 20 40 60 80 100

Memory Utilization [%]

0

20

40

60

80
T

hr
ou

gh
pu

t
[o

p/
se

c
x1

06
]

Nibble MICA

As YCSB does not delete objects, PUT will:

allocate + write [Nibble] overwrite [MICA]

C
om

p
ac

ti
on

co
st

s

100% RD

95% RD 5% WR

50% RD 50% WR

100% RD

95% RD 5% WR

50% RD 50% WR

YCSB Uniform Distribution @ 240 threads

Compaction
costs.

Alex Merritt VLDB 2018 Wed. 29 August

Revisit Memory Fragmentation

• Compaction resists fragmentation

• Nibble ≤ 10% additional memory

• MICA, Redis, Masstree ca. 1.5 - 2x

• P1 is high as objects are small

• Metadata per object is fixed

Nibble RAMCloud MICA Redis Masstree
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
em

or
y

O
ve

rh
ea

d

P1
P2
P3

P4
P5
P6

Label Pattern Label Pattern

P1 60⇾70 b P4 1⇾10 KiB

P2 1000⇾1024 b P5 10⇾100 KiB

P3 1000⇾1030 b P6 500⇾600 KiB

Alex Merritt VLDB 2018 Wed. 29 August

Dynamic Data Sets

• Captured trace from TableFS + Postmark

• Object sizes 500 - 4096 bytes

• 10% insertion 10% deletion

• 18mil. objects, 5.7 GiB working set

• Each thread executes trace in isolation

• Measure total time to complete

10 20 30 40 50 60 70 80

Memory Utilization [%]

0

400

800

1200

R
un

ti
m

e
[s

ec
.]

MICA Nibble

15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

Threads

0

1000

2000

3000

4000

R
un

ti
m

e
[s

ec
.]

Figure 9

Redis [64]
9000+ sec.

RAMCloud [240]

Masstree

MICA

Nibble

below

Time to complete trace @17% utilization

... and with less memory (135 threads)

Alex Merritt VLDB 2018 Wed. 29 August

Micro-Evaluation

GET
1kB

Mix
1kB

Mix
100B

0

50

100

T
hr

ou
gh

pu
t

[o
p/

se
c

x1
06

]

Atomic counter

Distributed epoch

GET
1kB

Mix
1kB

Mix
100B

0

50

100

T
hr

ou
gh

pu
t

[o
p/

se
c

x1
06

]

Global PUT

Local PUT

• 20x greater throughput

• TSC auto-increments

• 30ns to read

• No synchronization

• 1.75x - 2.48x

• 94% of global ops are
remote

Uniform YCSB 240 threads (Mix is a 50:50 ratio of PUT and GET)

How much does TSC help? Why exclusively write local memory?

Alex Merritt VLDB 2018 Wed. 29 August

Nibble — Summary

Future Work
• Multi-object transactions
• Data > DRAM
• Main-memory file systems

https://github.com/gtkernel/nibble-lsm

release
queue

index

logs

socket 0 socket 1 socket 2

compaction

hash(key)
epoch
table

reallocated

Thank you!

Alex Merritt VLDB 2018 Wed. 29 August

Backup Slides

Alex Merritt VLDB 2018 Wed. 29 August

Can We Improve Performance at High Capacity?

• All PUT overwrite existing objects

• No subsequent compaction

• Performance similar to MICA

• Subtle difference is updates in
Nibble-2 cannot be done to local
memory each time

smaug3. Same YCSB configuration as in
prior experiments. 135 threads 1 KiB objects

8 compaction threads.

0 20 40 60 80 100

Memory Utilization [%]

0

20

40

60

T
hr

ou
gh

pu
t

[o
p/

se
c

x1
06

]

Nibble Nibble-2

100% RD

95% RD 5% WR

50% RD 50% WR

100% RD

95% RD 5% WR

50% RD 50% WR

Alex Merritt VLDB 2018 Wed. 29 August

Related Work
Scalable / Concurrent Object Stores
MICA [NSDI’14]
Masstree [Eurosys’12]
OpLog [MIT-TR’14]
CPHash [MIT-TR’11]
Cuckoo [EuroSys’14]
Anna [ICDE’18]
FASTER [SIGMOD'18]

Log-structured Memory
Memshare [ATC’17]
LSM [FAST’14]
Bwtree [ICDE’13]
cLSM [EuroSys’15]
TRIAD [ATC’17]
LogNVMM [ATC’17]

Memory bandwidth
Shoal [ATC’15]
Carrefour [ASPLOS’13]
BATMAN [GT-TR’15]

Scalability / Concurrent Programming
CST Locks [ATC’17]
ASCY [SOSP’13, ASPLOS’15]
Optik [PPoP’16]
Broadcast Trees [OSDI’16]

Alex Merritt VLDB 2018 Wed. 29 August

Static Data Sets — YCSB Zipfian

10
0

20
0

0

20

40

60

80

T
hr

ou
gh

pu
t

[m
il.

op
/s

ec
]

Nibble

10
0

20
0

RAMCloud [1]

RAMCloud [240]

10
0

20
0

0

5

10

15

20
MICA

Masstree

Redis [64]

10
0

20
0

Thread Count

100% RD 95% RD 5% WR 50% RD
50% WR

100% WR

Alex Merritt VLDB 2018 Wed. 29 August

Multi-Head

• How useful to use multiple heads?

• Vary 1 to 15 heads

• Choose head randomly, or assign
head to core (choose with rdtscp)

• +15% with core-local head vs random
GET
1kB

Mix
1kB

Mix
100B

0

20

40

60

80

100

120

T
hr

ou
gh

pu
t

[o
p/

se
c

x1
06

]

Random head selection
[no. heads/socket]

Core-local head

1

2

4

8

15

Alex Merritt VLDB 2018 Wed. 29 August

Effects of Block and Segment Sizes

20 21 22 23 24 25 26 27

Segment Size [bytes, 2x]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

8 9 10 11 12 13 14 15 16 17 18 19 20

Block Size [bytes, 2x]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

20 21 22 23 24 25 26 27

Segment Size [bytes, 2x]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

8 9 10 11 12 13 14 15 16 17 18 19 20

Block Size [bytes, 2x]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

1 KiB objects

500-byte objects

• Small blocks are very costly

• Destructing and constructing segments

• Objects split into many pieces

• Segment sizes have interesting “sweet spot”

• Too small — frequent recycling

• Too big — greater latency to compact

Alex Merritt VLDB 2018 Wed. 29 August

Effects of Block and Segment Sizes
64-byte objects

• Small blocks are very costly

• Destructing and constructing segments

• Objects split into many pieces

• Segment sizes have interesting “sweet spot”

• Too small — frequent recycling

• Too big — greater latency to compact8 9 10 11 12 13 14 15 16 17 18 19 20

Block Size [bytes, 2x]

0

20

40

60

80

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

Alex Merritt VLDB 2018 Wed. 29 August

Effect of Compaction Parallelism

• Parallelism in compaction helps
significantly

• 20x compared to a single thread

• Diminishing returns

• In Nibble, segments waiting for
reclamation are assigned uniformly
among threads, to balance load

1 2 3 4 5 6 7 8 9 10 11 12

No. Compaction Threads [per socket]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

1 2 3 4 5 6 7 8 9 10 11 12

No. Compaction Threads [per socket]

0

10

20

30

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

1 KiB objects 500-byte objects

smaug3. Each CPU has 18 cores,
14 used by client threads.

Alex Merritt VLDB 2018 Wed. 29 August

Can Memory Copying Mechanisms Help?

1 5 10 15 20

Region Size [bytes, 2x]

°20
°15
°10
°5

0
5

10
15
20
25
30
35

R
ed

uc
ti
on

in
la

te
nc

y
[m

em
cp

y
vs

re
p,

%
]

1 5 10 15 20

Region Size [bytes, 2x]

102

103

104

105

106

L
at

en
cy

[n
s]

x86 rep movsb

GNU memcpy

100 500 1000 2000

Object Size [bytes]

0

10

20

30

40

T
hr

ou
gh

pu
t

[m
il.

op
s/

se
c]

GNU memcpy

x86 rep movsb

• We compare GNU libc memcpy with x86 instruction rep movsb

• Left two figures measure unloaded latency as region size varies

• Allocate large region and randomly select source and
destination offsets on local memory — 7 iterations

• Right figure shows end-to-end impact on use

typical object size

Alex Merritt VLDB 2018 Wed. 29 August

Bandwidth Saturation — Index

Alex Merritt VLDB 2018 Wed. 29 August

Tracking Segment Sizes

• Each log has table of Segment
metadata

• size attribute managed atomically

• Segment size monotonically
decreases after closed

…
SegmentInfo Table

PUT(key: 42, va: buf*, len: 100)

decr. 100
append

1
2

3 incr. 100

Alex Merritt VLDB 2018 Wed. 29 August

Candidate Segment Selection

• Recalculate when segment size changes
• Obtained from SegmentInfo table

• Compaction selects segment based on: age, current capacit
• Each socket has multiple threads

• Closed segments assigned round-robin
• Equal load, and trivially parallelize candidate selection

