
Oncilla: A GAS Runtime for Efficient Resource
Allocation and Data Movement in Accelerated

Clusters
Jeff Young∗, Se Hoon Shon∗, Sudhakar Yalamanchili∗, Alex Merritt†, Karsten Schwan†

∗School of Electrical and Computer Engineering, †College of Computing
Georgia Institute of Technology

{jyoung9,sehoon}@gatech.edu, sudha@ece.gatech.edu, merritt.alex@gatech.edu,schwan@cc.gatech.edu

Holger Fröning
Institute of Computer Engineering
University of Heidelberg, Germany

holger.froening@ziti.uni-heidelberg.de

Abstract—Accelerated and in-core implementations of Big
Data applications typically require large amounts of host and
accelerator memory as well as efficient mechanisms for trans-
ferring data to and from accelerators in heterogeneous clusters.
Scheduling for heterogeneous CPU and GPU clusters has been
investigated in depth in the high-performance computing (HPC)
and cloud computing arenas, but there has been less emphasis
on the management of cluster resource that is required to
schedule applications across multiple nodes and devices. Previous
approaches to address this resource management problem have
focused on either using low-performance software layers or on
adapting complex data movement techniques from the HPC
arena, which reduces performance and creates barriers for mi-
grating applications to new heterogeneous cluster architectures.

This work proposes a new system architecture for cluster
resource allocation and data movement built around the concept
of managed Global Address Spaces (GAS), or dynamically
aggregated memory regions that span multiple nodes. We propose
a software layer called Oncilla that uses a simple runtime and
API to take advantage of non-coherent hardware support for
GAS. The Oncilla runtime is evaluated using two different high-
performance networks for microkernels representative of the
TPC-H data warehousing benchmark, and this runtime enables
a reduction in runtime of up to 81%, on average, when compared
with standard disk-based data storage techniques. The use of the
Oncilla API is also evaluated for a simple breadth-first search
(BFS) benchmark to demonstrate how existing applications can
incorporate support for managed GAS.

I. INTRODUCTION

Recent growth in the size of data sets in the business world
[1] has led to an increased need for computational power
and large amounts of memory to support high-performance
processing of what has become known as Big Data. Graphics
processing units (GPUs) can provide added computational
power, but data must first be transferred to these devices for
processing. In addition, data center applications cannot easily
benefit from expensive hardware and specialized software
(e.g., message passing) that enables data movement for other
domains, such as high-performance computing (HPC), because
using these frameworks would require significant changes to

the application’s design. These constraints illustrate a fun-
damental problem for memory management in data centers:
Efficient memory management for large data center workloads
is currently limited by both the difficulty of data movement
between nodes and the difficulty of programming business
applications to support high-performance data movement.

Furthermore, many business applications, such as the read-
only databases used in data warehousing, do not actually re-
quire complex solutions to ensure memory coherence between
nodes; in some cases they can take advantage of relaxed
consistency requirements such as eventual consistency [2] or
on-demand consistency [3]. For this reason, it makes sense
to implement a memory management scheme that supports
simplified application programming and that provides high-
performance data movement using non-coherent remote mem-
ory accesses. The global address space (GAS) model [4] is
proposed as a suitable memory management scheme because
it provides a simple mechanism for accessing remote memory
(one-sided put/get operations), and because it scales well as the
size of a cluster grows. Previous implementations of the GAS
model have typically required custom interconnects [5], which
can be expensive in terms of cost, or complicated software
layers, which can reduce the performance of data movement
between nodes [6]. Thus, the ideal memory management
solution for these types of Big Data applications would be
low-cost, with minimal software interference and coherence
protocols, and would be easy to use with applications like
data warehousing.

This work proposes such a memory management solution
called Oncilla that consists of two pieces: 1) a system archi-
tecture built around non-coherent, managed Global Address
Spaces and the use of hardware-supported GAS to move
data between host memory and GPUs and 2) a runtime
abstraction that assists programmers in using the put/get model
for efficient data transfer. This work provides a demonstration
of the system model as well as performance analysis for both
typical data warehousing queries and a breadth-first search

Fig. 1. Address Space Models for Accelerator Clusters

graph algorithm.

II. MOTIVATION FOR THE ONCILLA RUNTIME

Other current frameworks, such as GASNet [7], MEM-
SCALE [8], and rCUDA [9] support some form of GAS-
based data movement, so a new runtime should be designed
to complement this existing work and also to solve a specific
problem. NVIDIA’s Unified Virtual Architecture, or UVA,
shown in Figure 1, currently has some GAS-like characteristics
in that it supports a common virtual address space across
all the host and device memory on one node. However, this
addressing is currently limited to one node.

GASNet supports the partitioned global address space
(PGAS) model of programming with distinct shared and
private memory regions (as drawn in yellow in Figure 1) and is
primarily focused on improved programmability across a wide
variety of cluster interconnects. However, GASNet currently
does not focus on data movement between accelerator and host
memory. Research into the Phalanx model [10] has extended
GASNet with a programming model approach for using GPUs
and doing data transfer with GAS, but it is unclear if this GPU
support will be merged back into the core GASNet API. Also,
both GASNet and Phalanx are limited by their programming
model that requires the use of UPC-style primitives to fully
take advantage of the underlying GAS model. The use of
these primitives may require substantial rewrites for business
applications.

From a virtualization perspective, the rCUDA project (rep-
resented as a software virtualization layer in Figure 1) im-
plements a solution for virtualizing remote GPUs and han-
dling data transfers using TCP/IP, InfiniBand, and NVIDIA’s
GPUDirect [11], but it focuses more on the computation aspect
of GPU virtualization rather than a cluster-wide aggregation
of resources. A closer analogue to our ideal GAS model for
host memory and accelerator memory can be found in the data
transfer support found in MEMSCALE (also shown in yellow
in Figure 1), which shares some characteristics of PGAS
models. The MEMSCALE project includes support for using
GAS across host memory for standard transactional databases,
and the hardware-supported GAS provided by the EXTOLL
network is used both by MEMSCALE and by Oncilla.

Fig. 2. GAS GPU Cluster System Model

All of these projects provide different solutions for sup-
porting data movement for multi-node applications, but they
are typically focused on the high-performance community and
developers who already have a detailed understanding of data
movement APIs (e.g., InfiniBand Verbs, MPI, TCP/IP sockets).
The ideal model would enable the coordination of cluster I/O,
memory, and network resources with an API that provides the
simplicity of NVIDIA’s UVA, as currently supported on one
node.

III. SYSTEM MODEL

As shown in Figure 2, the generalized system model used
with an Oncilla-supported cluster combines the host memory
(DRAM resources) and accelerator memory (GDDR) into a
large, logical partition that can be used by one or more
applications. Access to this aggregated memory in a high-
performance manner is supported by low-latency and high-
bandwidth hardware that supports the one-sided put/get model.
While overall application performance may be affected by the
location of remotely allocated memory, application scaling is
not restricted by where the memory is physically located.

Our implementation of this system model combines several
different hardware and software components to create a high-
performance and commodity solution for allocating remote
memory and sharing it more efficiently between cluster nodes.
The hardware supported GAS in our model is built around
EXTOLL network interface cards (NICs) or InfiniBand HCAs
while the software layer is composed of the Oncilla runtime for
data allocation and movement and the Red Fox compiler for
compilation and optimization of data warehousing application
kernels for the GPU.

A. Red Fox compiler framework

The Red Fox compiler is designed to run complex queries
with large amounts of data for a heterogeneous cluster and
is focused on optimizing computation kernels that run well
on highly parallel architectures, such as GPUs. As Figure 3
shows, Red Fox is comprised of: 1) A front-end to parse
a descriptive language such as Datalog and to create an
optimized query plan in the form of a graph of relational
algebra (RA) primitives, such as select, project, join, etc. 2)

Datalog

Queries

Datalog

Front-end

RA CUDA

PTX

RA to CUDA Compiler

Kernel

Weaver

RA Primitive CUDA

 Library

Runtime

Manager

Language

Front-End

Translation

Layer
GPU

Accelerator

CPU

Host

Fig. 3. Red Fox Compiler Flow

A compiler to map these RA primitives to their corresponding
GPU kernels using NVIDIA’s CUDA language [12] 3) A
kernel optimization component called Kernel Weaver that
applies Kernel Fusion/Fission (KFF) optimizations to reduce
the amount of data transferred to the GPU and to overlap data
movement with computation [13] [14].

Previous work has shown that database computation maps
well to GPUs due the parallel nature of many operations
[15], and more recent work with Red Fox’s Kernel Fusion
optimization has helped to reduce the overhead of transferring
data over the local PCI Express (PCIe) bus by combining
computation that operates over the same input set. While
Kernel Fusion can help to mitigate some of the effects of Big
Data by limiting the number of PCIe data transfers, the transfer
of large in-core data sets to smaller GPU global memory is
still limited by the efficiency of data transfer between cluster
nodes. The Oncilla runtime discussed in Section IV aims to
provide this efficient inter-node data movement mechanism.

B. The EXTOLL Networking Fabric

EXTOLL [16] is a network fabric that allows for the
optimization of network characteristics to support specialized
networking tasks, including the consolidation of resources
and low-latency data transfer between nodes. The two most
relevant aspects of EXTOLL are its support of global address
spaces (GAS) for consolidation purposes and low-overhead
put and get semantics.

By using a direct low-latency hardware path and one-sided
communication with remote resources, global address spaces
can be spanned up across any number of nodes. From an
application’s perspective, local and remote accesses cannot
be distinguished based on location, but such details can be
exposed in the programming model for locality optimizations.
These global address spaces can be used for dynamic resource
aggregation, thus breaking up the standard static resource
partitioning associated with cluster computing. In particular
in-memory, data-centric applications like data warehousing
can benefit from the vast amount of memory provided by
such aggregated resources [8]. In addition, both CPUs and
other components like accelerators can access global address
spaces for resource aggregation. As disaggregated memory
resources cannot easily provide the capacity required for data-
warehousing applications, here we use global address spaces
for resource consolidation purposes to keep data as close to
the processing units as possible.

While put/get operations are provided by many different

Fig. 4. EXTOLL Remote Memory Access Dataflow

networks, the one-sided communication operations in EX-
TOLL are optimized for fine-grained communication schemes
and high-core counts. First, the overhead associated with
registration/de-registration and initial communication costs
are minimized. Secondly, in-hardware virtualization supports
multi-core environments without intermediate multiplexing
software layers. Features that have proven to be beneficial for
HPC applications also are useful for resource consolidation
purposes: the need to keep memory ranges registered is low,
as the registration process is very fast (2 µs vs. 50 µs
initial overhead for small memory ranges when compared
to IB [17]). As registration requires pinning pages in main
memory, too many registrations can reduce the number of page
swap candidates and significantly impact demand paging and
system-level performance. Also, while many put/get semantics
provide few possibilities for notification about completed op-
erations, EXTOLL provides notifications on both sides (origin
and target) that can signal completion to supervising processes
with very little overhead. In this work, this feature helps to
maximize overlap among the various communication flows.

The EXTOLL NIC currently supports three styles of data
transfer: 1) The Shared Memory Functional Unit (SMFU)
[18] exposes remote memory via Linux’s mmap mechanism
and allows for direct manipulation of remote memory us-
ing put/get operations on pointers. 2) The Remote Memory
Access (RMA) unit supports RDMA-style operations using
low-latency pinning of pages as shown in Figure 4. The low-
overhead Put/Get operations used with RMA are based on
a single-instruction dispatch of work requests [17] and are
helpful to minimize communication overhead for fine-grained
messaging applications, thus maximizing overlap between
computation and communication. 3) The VELO unit can be
used to send small messages using hardware “mailboxes” and
is used to support MPI over the EXTOLL network. This work
makes use of the RMA unit to implement a GAS-supported
accelerator clusters, but SMFU or VELO could also be used
to perform low-latency put/get operations across the GAS.

Due to the API-based nature of one-sided transfers using
the EXTOLL RMA unit as well as the availability of the
InfiniBand Verbs API for data transfer we refer to our model
as a “managed” global address space, since memory regions
are indirectly accessed. This indirect access is mostly due to
the limitations of current hardware and software stacks, but
the aggregation of multiple, non-coherent regions across the
cluster and the use of put/get operations both provides similar
functionality to traditional global address spaces.

Fig. 5. Oncilla Runtime and use of API

IV. ONCILLA RUNTIME AND API

The Oncilla runtime is designed to abstract away the com-
plexity of remote memory allocation and data movement while
also providing optimized data transfer between remote and
local host memory and I/O memory (on GPUs). As shown in
Figure 5, the runtime consists of a control path and a separate
data path. The control path performs the request, allocation,
and freeing of local and remote memory and is accessed by an
application through the “OncillaMem” library. In this example,
a local allocation is serviced easily through standard memory
allocation techniques (malloc, or new), and a remote allocation
initiates the allocation of pinned DRAM pages on the remote
node. Once the allocation takes place, the runtime keeps track
of the state of the allocation and also any processes needed
on each node to set up and tear down memory buffers. This
information is made available to the application via the library,
and subsequent “oncilla copy” (aka, ocm copy) calls use this
state to transfer data over the desired network layer.

The data path could consist of any high-performance net-
work, but this work focuses on the EXTOLL RMA network
interface due to its low memory registration costs, high
bandwidth, and low latency for small messages. InfiniBand
RDMA is a similar high-performance networking fabric that
is evaluated alongside EXTOLL in Section VI-A. Regardless
of the selected fabric, once the setup phase is complete, the
application relies solely on the library and network layer to
transfer data from a remote memory to local host memory
or local GPU global memory. This abstraction exposes a
large memory to the application developer without having to
optimize for the specific network underneath.

This idea of abstraction is further defined by the Oncilla API
which has the concept of “opaque” and “transparent” operators
that support either naı̈ve or explicit hints about remote memory
allocation and data placement. These library interfaces allow
a developer to specify whether just a large chunk of memory
is needed or whether a chunk of memory on a specific device
on a certain node is needed. For example, a naı̈ve allocation
might specify that 20 GB of host memory is needed but not
the location of this memory.

oncilla alloc(20 GB, DRAM)

This type of operation could allow for 20 GB of DRAM to
be allocated on the local node, across two nodes, or across four

nodes. The developer in this case accepts the access penalty
for remote DRAM rather than using disk-based operations.
Alternatively, a developer could specify allocation in a fashion
that is closer to traditional NUMA commands.

oncilla alloc(20 GB, node1 ddr, node2 ddr, equal alloc)

This type of “transparent” operator can be extended to
GPU memory, and the Oncilla runtime helps to allocate and
keep track of more advanced allocation and data movement
operations. While scheduling of computation and fair memory
allocation decisions can also be incorporated into the runtime,
this work does not currently attempt to solve this problem.
Future work includes evaluating the Oncilla resource man-
agement framework alongside existing scheduling frameworks,
such as those found in [19] and [20].

A. Using Oncilla for Existing Single-node Applications

As Section VI will show, Oncilla can be used to enable
multi-node resource allocation and data movement for existing
single-node applications. This work has demonstrated a few
key steps that are useful to consider when using Oncilla:

• Plan data partitioning: The most important step for
modifying applications to work with remote memory is
to consider how input data should be partitioned. The
applications discussed in this paper depend on aggrega-
tion of large amounts of remote memory and the use of
one accelerator, but the use of multiple accelerators could
inform what segments of data should be placed on each
node.

• Support non-coherent memory accesses (or not): Ap-
plications that take advantage of Oncilla must either
conform to a model that supports non-coherent put/get
operations or include additional software layers to pro-
vide consistency between shared regions. TPC-H is an
application that performs few data updates, so it conforms
well to this standard.

• Use managed allocations Oncilla’s ocm alloc can cur-
rently be used to replace GPU allocations, local DRAM
allocations and remote host memory allocations with
EXTOLL or InfiniBand. Besides having simplified copy
semantics with the ocm copy API call, allocation with
Oncilla allows the master node to keep track of exist-
ing allocations for more informed resource management
across the cluster. An ocm localbuf API call provides
a standard C pointer to the Oncilla allocated buffer,
minimizing code modifications.

• Define the data transfer model For aggregated data
workloads like data warehousing, data transfer with
Oncilla is performed using multiple ocm copy calls to
stream inputs from remote host memory to local accel-
erators. Other applications may require small reads and
writes that could affect data placement strategies and the
placement of data transfer calls.

Fig. 6. Relational Algebra Complex Benchmarks

V. EXPERIMENTAL SETUP

Two different two-node systems are used to evaluate the On-
cilla framework. Each blade in the EXTOLL cluster includes a
single-socket AMD CPU, a solid-state drive (SSD), 16 GB of
DRAM, an EXTOLL2 network interface, and a NVIDIA GTX
480 GPU with 1.5 GB of GDDR. Each node in the InfiniBand
cluster contains dual-socket Intel CPUs, a standard 5400 RPM
hard drive, 12 GB of DRAM, an InfiniBand ConnectX-2 VPI
QDR adapter, and a GTX 670 GPU with 4 GB of GDDR.

The main application workload used to simulate large
data warehousing applications is based on relational algebra
primitives like those that compose the queries represented
in the TPC-H benchmark suite [21] These queries are also
representative of the types of operations that Red Fox aims
to support for GPU acceleration. These primitives, including
project, select, and join, have been optimized for the GPU
to perform efficiently when compared to CPU-only primitives
[12]. However, the performance of these GPU primitives is
limited by two factors: 1) the size of GPU global memory
required for inputs, outputs, and temporary data and 2) the
cost of data transfer across the PCI Express bus.

As shown in Figure 6, the tests include two simple op-
erations, select and join, and three more complex operations
that incorporate select, project, and join primitives. The more
complex microbenchmarks also have two variations that can
take advantage of Kernel Fusion [13] to reduce the impact
of the PCI Express data transfer costs and to reduce each
kernel’s GPU global memory footprint. These variations are
represented as nonfused or fused (not pictured) microbench-
marks in the results.

The input sets for each of these microbenchmarks are
transferred to the GPU either directly from a hard drive using
standard C++ file operators (fread) or from local and remote
memory using the RMA or RDMA hardware. Due to the
limitations of the hardware setup, input files are limited to
24 GB, and each node can allocate up to 12 GB of data
to be accessed from local memory, RMA, or RMA. The IB
cluster is limited to 11 GB, so inputs are pulled from an 11
GB allocation, where 1 GB of input is reused. Data files are
represented using binary format and are read sequentially from
disk or remote memory.

As a secondary application, the SHOC BFS benchmark [22]
is used to represent a simple graph algorithm and to demon-
strate how Oncilla can be extended for HPC applications. The
benchmark implementation is currently limited to the size of

Fig. 7. EXTOLL and IB Server Allocation

Fig. 8. EXTOLL and IB Client Allocation

the workload that fits on one GPU, so 1 million vertices
are used as input for each test. Two tests are conducted to
demonstrate the overhead of using Oncilla for remote memory
allocation and data transfer - one where the input graph
resides solely in local memory and one where the input graph
resides in remote memory. An ideal implementation of this
benchmark would use a multi-node, partitioned graph with
Oncilla for data movement instead of software layers, such as
MPI, but the standard for distributed graph implementations,
Graph 500 [23], currently lacks suitable support for GPU-
based algorithms. For this reason, we focus on a simple
evaluation of the performance aspects and programmability
of using the Oncilla model for this type of application.

VI. RESULTS

Before evaluating the applications, we use the Oncilla
framework to perform a characterization of the allocation and
deallocation characteristics of the EXTOLL and InfiniBand
networks. These allocation and deallocation tests look at
timing statistics for the creation of symmetric local and remote
buffers, and they give insight into which fabric might be best
suited for a certain type of allocation.

A. Oncilla Control Path

As Figure 7 shows, the EXTOLL network excels at small
allocations while the InfiniBand adapter provides quicker allo-
cations of large memory regions. For the smallest allocation,
64 B EXTOLL takes 250.75 µs versus 1.35 ms in the IB case.
However, for a 4 GB allocation, EXTOLL takes 1.67 s while
InfiniBand takes 40.54 ms. Since both adapters must register
or pin pages in the OS to provide non-coherent buffers for one-
sided put/get operations, the difference in performance can be

Fig. 9. IB and EXTOLL Bandwidth Comparison

found in the design and optimization of the respective kernel
drivers, including support for Linux features like huge pages.
For instance, the EXTOLL 4 GB allocation takes 94.89 ms to
be registered with the OS while the IB allocation completes
the registration process in 38.88 ms. However, for a 64 B
allocation EXTOLL requires just 3.10 µs as compared to 37.68
µs for IB. These results indicate that EXTOLL is faster for
allocations smaller than 4-8 MB while IB is faster for larger
allocations.

Figure 8 shows timing for EXTOLL and IB allocate and
free operations as well as the overhead for making an Oncilla
allocation for varying sizes of memory regions. EXTOLL takes
from 242.66 µs to 95.47 ms to allocate a local buffer and
connect to a remote allocation while InfiniBand takes between
1.26 ms and 40.80 ms for the same memory region sizes.
Likewise, teardown for EXTOLL takes between 59.12 µs and
73.28 ms to tear down a 64B or 4GB region while InfiniBand
takes between 301.42 µs and 42.15 ms.

Oncilla overhead for the allocation of remote memory
regions is consistently around 1.18 ms for the two-node case
while deallocation of memory regions takes from 1.45 to 1.55
ms. This overhead is due to the time taken for transmission
of POSIX and TCP/IP messages that are sent between the
Oncilla daemons, so it is not affected by the one-sided setup
and teardown that takes place for a server and client allocation.
While this overhead is substantial for very small allocations,
the use of memory regions larger than 8 MB greatly amortizes
the Oncilla setup and teardown overhead. Local host and GPU
allocations that use the Oncilla framework also incur a small
overhead penalty, on the order of 1 ms, but this overhead
allows for tracking of cluster-wide resource allocations by a
master daemon that can then make informed decisions about
allocation based on the available resources in the cluster.

The use of the Oncilla framework also allows for easy
comparison of hardware bandwidths for put and get operations,
as shown in Figure 9. The EXTOLL network adapter is
based on an FPGA running at 156 MHz, so its realized
bandwidth is limited to 9 Gbps (9-10 Gbps, theoretical) while
the ASIC-based IB QDR adapter has a maximum realized
bandwidth of 20 Gbps (32 Gbps, theoretical). Despite the
frequency limitations of the EXTOLL adapter, this diagram
also illustrates its suitability for transmission of messages
smaller than 8 KB, which is discussed in more detail in [16].

Fig. 10. TPC-H with Oncilla (IB)

Fig. 11. TPC-H with Oncilla (EXTOLL)

B. Oncilla as an Aggregation Fabric - TPC-H Microbench-
marks

Figures 10 and 11 show results for using Oncilla to aggre-
gate host memory for a data warehousing application, such
as TPC-H. Computation time for the kernels on the GTX
670 ranges from 0.17 seconds (A Fused) up to 74.2 seconds
(B Nonfused), and the fused variants require between 2.21
(A) and 9.36 seconds (C) less computation time to process 24
GB of input data. The use of remote IB memory as shown
in Figure 10 for input data transfer is between 4.6 to 10.4
times faster than reading input data from disk, and the use
of EXTOLL is 1.2 to 3.2 times faster than transfer from an
SSD disk. The use of InfiniBand decreases the total runtime
on average by 81% over standard disk (80.88 s vs. 44.20 s)
while the use of EXTOLL decreases runtime on average by
22% (71.06 s vs. 58.02 s) when compared to reading from an
SSD.

Both figures demonstrate the computational difficulty of
doing join operations on a GPU - this is due to the small
input size that can be used for inner join on the GPU, and
it results in more iterations for the join, B, and C kernels.
For the B nonfused kernel, performing two joins requires 74.2
seconds (GTX 670) to 81.3 seconds (GTX 480) while the
data transfer requires just 29.0 seconds and 15.9 seconds,
respectively. Benchmarks like A Fused greatly benefit from
the use of GPU shared memory and small output sizes and
can be processed with input sizes of 368 MB (GTX 480)
or 1000 MB (GTX 670), but complex join-based operations

Fig. 12. SHOC BFS - Oncilla Overhead

(B Nonfused) require small input sizes of either 10 or 28 MB.
The realized bandwidth for each of the networking protocols

ranges from 5.15 to 7.2 Gbps for EXTOLL and 14.8 to 17.5
Gbps for InfiniBand while disk transfer bandwidths range from
1.5 (HDD) to 5.84 Gbps (SSD), depending on the input chunk
size for each benchmark. The high bandwidth performance
in the SSD case is representative of the sequential nature of
these microbenchmarks where large input sets, representing
large data tables, are transferred first to host memory and
then to the GPU. The use of random access patterns to
select small pieces of a database table would likely favor
the in-core implementations using IB and EXTOLL, despite
SSD’s benefits over standard rotational HDDs. GPU transfer
bandwidths are relatively consistent at between 2.5 to 3 GB/s
(GTX 480) and 3.6 to 4.5 GB/s (GTX 670).

C. Oncilla for HPC Applications - BFS

As a simple example of how Oncilla can be used to
enable multi-node resource support for existing applications,
the SHOC BFS benchmark (based on the algorithm described
in [24]) was migrated to use inputs from remote memory. This
migration required just three steps: 1) the replacement of local
GPU allocations with Oncilla-managed GPU allocations, 2)
the addition of two remote allocations using the Oncilla API,
3) and the replacement of cudaMemcpy calls with calls to
ocm copy.

Figure 12 shows the performance overhead of the Oncilla
framework when it is used to hold an in-core data store
for a standard graph of one million vertices for the SHOC
BFS benchmark. The allocation of the edge array and initial
adjacency list on a remote node takes about 5.7x (EXTOLL)
to 6.1x (IB) longer for the initialization phase and 1.7 to
5.8x longer for teardown. Input data transfer takes 4.2x longer
than the baseline case with IB due to its high bandwidth, but
EXTOLL in this case takes 20.9x longer due to its lower
bandwidth - this uncharacteristic slowdown is likely due to
the use of one large EXTOLL buffer holding both inputs as
opposed to separate smaller buffers used with IB. Overall,
BFS with IB and Oncilla is 2.2x slower than the baseline, and
EXTOLL is 3.5x slower than its relative baseline.

Currently, this benchmark is limited to one iteration with
input sizes of 4 MB and 8 MB respectively for the edge array
and adjacency list. This small input size makes it difficult

Fig. 13. Oncilla Optimized Data Transfer for Accelerators

to recommend using Oncilla for this particular BFS imple-
mentation, but the ease of implementation with the Oncilla
framework and reasonable performance characteristics would
likely make it more suitable for larger graphs.

VII. RELATED WORK

Other recent work has also focused on memory management
for in-core business applications. For example, the MVAPICH
group has pushed forward in implementing RDMA support for
core applications, including HDFS [25]. The Oncilla frame-
work differs from this work in that it focuses on providing
a low overhead but network agnostic path for doing remote
memory allocations and data transfer. This approach has
performance penalties with respect to a straight-forward use
of the IB Verbs API, but it also offers a simpler conversion
path for using a variety of networking substrates and additional
support for remote resource management.

As mentioned previously in Section II, other projects that
have focused on using global address spaces to share clus-
ter resources include MEMSCALE [8], rCUDA [9], and
APENET+ [26]. Much of the work for each of these projects is
focused on providing support for high-performance computing
applications, which means that potential applications can be
rewritten to take advantage of the high-performance aspects
of InfiniBand [27] and CUDA optimizations [28]. Related
projects in the GPU virtualization space include DS-CUDA
[29], which uses a middleware to launch HPC jobs across
many GPUs in a cluster. Oncilla aims to provide similar high-
performance data movement while also focusing on a better
allocation of resources and better support for a wide variety of
accelerator and network resources, as opposed to optimizing
for one specific networking fabric.

Finally, projects like RAMCloud [30] are focused on pro-
viding large, in-core memory allocations using standardized
protocols. Currently, RAMCloud focuses only on host memory
and does not incorporate accelerator resources.

VIII. FURTHER OPTIMIZATIONS AND CLUSTER
SCALABILITY

Also important to the discussion of resource management
is the use of Oncilla as a portability framework. The same
application code that is used to enable multi-node memory
aggregation on an IB-based cluster can then be moved to an

EXTOLL-based cluster and run without any further modifica-
tions. Similar to how open-source frameworks like OpenStack
[31] focus on running virtualized applications on a variety of
heterogeneous clusters, Oncilla provides a path for application
developers to design high-performance applications that can
operate on clusters with heterogeneous network architectures.
One example would be to use the Oncilla stack to choose,
at run-time, the desired networking fabric on a per-allocation
basis, dependent on application characteristics and on available
networking fabrics. For instance, small allocations and put/get
operations might work best with the EXTOLL RMA or VELO
protocols, while large, bandwidth intensive transfers might be
more suited for InfiniBand.

To this end, the Oncilla software stack must also be capable
of optimizing data movement across host-to-host, host-to-
GPU, and GPU-to-GPU data transfers as shown in Figure 13.
Future work with Oncilla will support CUDA 5 and related
devices, which can take advantage of the Peer-to-Peer API
to transfer data directly from a NIC to the GPU and reduce
inter-node overheads.

Experimental results demonstrate that Oncilla provides a
high-performance abstraction for allocating memory on re-
mote nodes and transferring it to accelerators, but many data
warehousing applications may scale to several terabytes of
data. While the test infrastructure is limited in its installed
memory, typical servers can be provisioned with between 256
and 512 GB of host memory. For clusters that are built around
a 3D torus interconnect, a node might have up to six nodes
one hop away and up to 30 nodes one to two hops away.
This translates to potentially having 3 - 15 TB of DRAM
that can be incorporated into the global address space and
that could contain many data warehousing applications in-core
[1]. Oncilla further improves the performance and ease of use
of these clusters through low-overhead allocations and high-
performance data movement.

IX. CONCLUSION

The Oncilla framework and associated managed GAS sys-
tem model provide an important addition to existing research
into scheduling and data placement for emerging heteroge-
neous clusters. Due to the growth of large data sets for Big
Data applications like data warehousing and the increasing
availability of accelerator clouds, such as EC2, it is important
to be able to manage both host and accelerator resources across
a variety of cluster infrastructures. This work focuses on two
such networking infrastructures, EXTOLL and InfiniBand, and
the use of CUDA-based accelerators, but future heterogeneous
clusters might include multiple networks and OpenCL, CUDA,
or custom accelerators. In addition to future research into
extending Oncilla for use with the full Red Fox framework,
future work will likely focus on the convergence of different
accelerators in a single cluster as well as further research into
how to cooperatively manage the allocation of cluster-wide
resources with scheduling for both standard and virtualized
applications.

X. ACKNOWLEDGEMENTS

We would like to acknowledge the EXTOLL team for
their expert assistance with hardware debugging and cluster
support as well as Advanced Industrial Computer (AIC) for
the donation of HTX-based server blades.

REFERENCES

[1] IOUG, “A new dimension to data warehousing: 2011 IOUG data
warehousing survey,” 2012.

[2] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, Jan.
2009.

[3] H. Fröning, H. Montaner, F. Silla, and J. Duato, “On memory relaxations
for extreme manycore system scalability,” NDCA-2 Workshop, 2011.

[4] J. S. Chase et al., “Sharing and protection in a single-address-space
operating system,” ACM Trans. Comput. Syst., vol. 12, no. 4, Nov. 1994.

[5] C. Vaughan et al., “Investigating the impact of the Cielo Cray XE6
architecture on scientific application codes,” in IPDPSW, May 2011.

[6] L. A. Giannini and others., “A software architecture for global address
space communication on clusters: Put/Get on Fast Messages,” in HPDC,
1998.

[7] D. Bonachea, “GASNet specification, v1.1,” Tech. Rep., 2002.
[8] H. Montaner et al., “MEMSCALE: A scalable environment for

databases,” in HPCC 2011, 2011.
[9] J. Duato et al., “Enabling CUDA acceleration within virtual machines

using rCUDA,” HiPC, 2011.
[10] M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified program-

ming model for heterogeneous machines,” in SC, 2012.
[11] G. Shainer et al., “The development of Mellanox/NVIDIA GPUDirect

over InfiniBand - a new model for GPU to GPU communications,”
Journal of Computer Science - Research and Development, Jun. 2011.

[12] G. Diamos et al., “Relational algorithms for multi-bulk-synchronous
processors,” PPoPP, 2013.

[13] H. Wu et al., “Kernel Weaver: Automatically fusing database primitives
for efficient GPU computation,” MICRO, 2012.

[14] H. Wu et al., “Optimizing data warehousing applications for GPUs using
kernel fusion/fission,” IPDPS-PLC, 2012.

[15] B. He et al., “Relational query coprocessing on graphics processors,”
ACM Trans. Database Syst., 2009.

[16] H. Fröning, M. Nüssle, H. Litz, C. Leber, and U. Brüning, “On achieving
high message rates,” CCGRID, 2013.

[17] M. Nüssle et al., “A resource optimized remote-memory-access archi-
tecture for low-latency communication,” in ICPP 2009.

[18] H. Fröning et al., “Efficient hardware support for the Partitioned Global
Address Space,” IPDPS-CAC, 2010.

[19] V. Ravi et al., “Scheduling concurrent applications on a cluster of CPU-
GPU nodes,” in CCGrid 2012, 2012.

[20] A. M. Merritt et al., “Shadowfax: Scaling in heterogeneous cluster
systems via GPGPU assemblies,” in VTDC 2011, 2011.

[21] “TCP-H benchmark specification,” http://www.tpc.org/tpch/.
[22] A. Danalis et al., “The Scalable HeterOgeneous Computing (SHOC)

benchmark suite,” in GPGPU 3, 2010.
[23] R. C. Murphy et al., “Introducing the Graph 500,” in Cray User’s Group

(CUG), 2010.
[24] S. Hong et al., “Accelerating CUDA graph algorithms at maximum

warp,” ser. PPoPP ’11, 2011.
[25] N. S. Islam et al., “High performance RDMA-based design of HDFS

over InfiniBand,” in SC 2012.
[26] M. Bernaschi, M. Bisson, and D. Rossetti, “Benchmarking of commu-

nication techniques for GPUs,” J. Parallel Distrib. Comput., 2013.
[27] C. Reano et al., “Cu2rcu: Towards the complete rCUDA remote GPU

virtualization and sharing solution,” in HiPC, 2012.
[28] M. Bernaschi et al., “Breadth first search on APEnet+,” in SC Compan-

ion (SCC), 2012.
[29] M. Oikawa et al., “DS-CUDA: A middleware to use many GPUs in the

cloud environment,” in SC Companion (SCC), 2012.
[30] J. Ousterhout et al., “The case for RAMCloud,” Commun. ACM, 2011.
[31] S. Crago et al., “Heterogeneous cloud computing,” in CLUSTER, 2011.

