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ABSTRACT

High-end computing systems are becoming increasingly heteroge-
neous, with nodes comprised of multiple CPUs and accelerators,
like GPGPUs, and with potential additional heterogeneity in mem-
ory configurations and network connectivities. Further, as we move
to exascale systems, the view of their future use is one in which
simulations co-run with online analytics or visualization methods,
or where a high fidelity simulation may co-run with lower order
methods and/or with programs performing uncertainty quantifica-
tion. To explore and understand the challenges when multiple ap-
plications are mapped to heterogeneous machine resources, our re-
search has developed methods that make it easy to construct ‘vir-
tual hardware platforms’ comprised of sets of CPUs and GPGPUs
custom-configured for applications when and as required. Specifi-
cally, the ‘slicing’ runtime presented in this paper manages for each
application a set of resources, and at any one time, multiple such
slices operate on shared underlying hardware. This paper describes
the slicing abstraction and its ability to configure cluster hardware
resources. It experiments with application scale-out, focusing on
their computationally intensive GPGPU-based computations, and
it evaluates cluster-level resource sharing across multiple slices on
the Keeneland machine, an XSEDE resource.

Categories and Subject Descriptors

C.1.4 [Computer Systems Organization]: Processor Architec-
tures—Distributed architectures
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1. INTRODUCTION

High-end machines are becoming increasingly heterogeneous,
incorporating combinations of multi-socket many-core processors,
non-uniform memory, and accelerators like GPGPUs, all to satisfy
increasing demands on computing and memory resources. Soft-
ware support for GPGPUs, e.g., OpenCL [23] and NVIDIA CU-
DA [32], has greatly contributed to their adoption in modern high-
end systems in both (1) the HPC domain, e.g., the Tianhe-1A super-
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computer, ORNL'’s Titan, and the XSEDE Keeneland NSF Track II
machine used in our work, and (2) in the enterprise domain, e.g.,
Amazon’s HPC cloud offering and Hewlett-Packard’s ‘Moonshot’
server system [18].

Variations in heterogeneity among high performance systems are
diverse. Nodes in the Titan machine, for example, are each com-
prised of a single-socket 16-core CPU, 32 GiB of main memory and
one NVIDIA K20x ‘Kepler’ GPGPU, all interconnected via a Cray
Gemini network fabric. In Keeneland, each node contains 16 CPU
cores across two sockets, each with their own I/O hub to which
three NVIDIA M2090 ‘Fermi’ GPGPUs and an InfiniBand card
are connected. In the latter system, applications experience vary-
ing memory access latencies among not only CPU threads, but also
among the GPGPUs and network fabric, requiring host-memory
copies to traverse I/O hub boundaries. Pushing towards exascale
systems, we can expect to see increased heterogeneity [24] [30]
[18] [9] and a greater dependence on software (runtime) systems
enabling developers to cope with it [15] [13], including to manage
its resources [8].

Management of current and future systems creates complex chal-
lenges for both applications and systems software. Not only must
applications incorporate a variety of accelerator programming mod-
els, but they must also become aware of data partitioning chal-
lenges, data movement costs, and invariably, the physical configu-
ration of the underlying high-performance machine. Modern man-
agement software for high-performance systems has begun to in-
corporate aspects of heterogeneity into its algorithms, albeit lim-
ited, e.g., Torque enables cluster administrators to specify how many
GPGPUs are present on each node, with recent research explor-
ing the execution of multiple applications on shared hardware [39].
Yet, to maximize efficiency, the current state of the art remains such
that developers must profile their codes and modify them to exploit
specific hardware characteristics, and in addition, such modifica-
tions are subject to change across deployed computer systems, thus
requiring investments in time and development for porting. Finally,
beyond efficient resource usage by e.g., single simulation codes,
difficulties are compounded for new usage models expected for
high-end machines, where simulations run alongside online data
analytics or visualization codes used to assess simulation valid-
ity [1] [30] [31]. To study heterogenous cluster hardware and its
efficient use by applications, we advocate that clusters should be
presented to applications as dynamic ‘slices’ of their hardware,
supported by techniques to understand how to best provision slices
for high performance and to gain insights into application charac-
teristics that present opportunities for fully exploiting cluster hard-
ware. We present GPGPU Slices, each providing an application
with exactly the resources it needs, via a portion of the cluster’s
resources — CPUs, GPGPUs, and memory — where slice alloca-
tions can be made at sub-node granularity. GPGPU Slices leverage



profiles that describe an application’s GPGPU usage and charac-
terize its sensitivities to changes in the logical platform, including
changes affecting GPGPU locality and host-GPGPU interactions,
e.g., data movements and dependencies between GPGPU opera-
tions. Profiles are extracted automatically, from observations of
an application’s use of the accelerator API (e.g., its CUDA calls).
Profiles and data about current resource availability, then, is used
to compose for each application the assembly it requires.

The specific contributions in this paper are to: (1) present our no-
tion of a cluster ‘slice’ and how its realization in our software run-

time can benefit studies of GPGPU applications on high-performance

systems; (2) demonstrate at scale the efficiency of our runtime
infrastructure, and the use and extraction of accelerator profiles
associated with applications which guide the efficient formation
of a hardware slice; and (3) discuss insights about GPGPU ap-
plication characteristics that enable more efficient exploitation of
the heterogeneous high end machines. Cluster slicing is imple-
mented and evaluated for Linux-based environments and NVIDIA
CUDA GPGPUs. Experimental results obtained with realistic HPC
codes such as LAMMPS, an S3D mini-application from the SHOC
benchmark suite [10], and NAS-LU [35] on the Keeneland machine
demonstrate the use of slicing to provide gains of up to 5x in sys-
tem throughput for mixed workloads on 72 nodes, and the scaling
of a single GPGPU Slice to 10 GPGPUs for LAMMPS with over-
heads less than 15% and up to 111 GPGPUs for SHOC/S3D with
less than 1% overhead.

2. GPGPU ASSEMBLIES

To accomodate new usage models where exascale systems are
expected to host multiple applications on the same set of physi-
cal nodes, we propose that the provisioning and management of
hetergeneous cluster resources be done using slices of the cluster
hardware. Slices offer a more flexible granularity of provisioning
that can adapt to specific applications’ needs by exposing compo-
nents internal to the cluster nodes for use. For example, GPGPU-
‘heavy’ application codes may need only enough CPU resources
(not necessarily unique CPUs) to maintain access to and drive the
use of available GPGPUs in the cluster, leaving all remaining CPU
resources across selected nodes available for provisioning to other
slices. A more hybrid code which may, for example, leverage mul-
tiple computational libraries, some of which can or cannot take ad-
vantage of GPGPUs underneath, can be given a more diverse slice
on the cluster, with a variety of CPUs and GPGPUs selected across
some number of nodes in the cluster. There may also be codes
which do not take advantage of GPGPUs or other modern accel-
erators, such as from legacy implementations, which may be best
adapted to cluster slices containing only CPUs and some sufficient
amount of host memory. Lastly, codes well-tuned for the underly-
ing physical cluster and node configuration may use a slice entirely
comprised of whole nodes.

The presentation of a slice to an application is in the form of a
GPGPU Assembly, a processing-centric, software-abstracted view
of the resources belonging to a slice. Providing an abstracted view
of resources within a slice enables increased flexibility in the provi-
sioning of such resources. For example, in current systems, codes
that aggressively ‘scale out’ in the number of GPGPUs used must
explicitly incorporate distributed programming models to enable
partitioning of their work across multiple nodes. With a GPGPU
Assembly, there is no need to re-program a code when it wishes
to use more accelerators than those present on a single node of the
underlying high performance machine. Instead, using an assem-
bly, it simply scales to some greater numbers of GPGPUs available
in the cluster, by ‘borrowing” GPGPUs from other physical nodes
and accessing them remotely. The slicing runtime, i.e., the GPGPU
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Figure 1: Example assembly mappings to slices provided by our cluster
slicing runtime, considering various constraints.

Assembly, assists the application in transparently and efficiently
accessing such remote accelerator resources.

The ability of applications to run on the resulting alternative log-
ical machine configurations is enabled by the well-defined APIs
with which today’s applications access GPGPUs (i.e., with the CU-
DA or OpenCL APIs in our current implementation). Our slicing
runtime, then, composes slices and constructs suitable assemblies,
interposing and redirecting API calls to the physical GPGPUs ac-
cording to the mapping instantiated between the application and
underlying physical GPGPUs. Applications simply link with the
interposing assembly library, and the runtime ensures efficient GP-
GPU access and use. The GPGPU assembly abstraction leverages
the ideas of device virtualization [2] [6] [27] [29] [17] — through
device remoting not visible to guest virtual machines [25] — and of
performance isolation [6]. Its implementation, however, does not
require hypervisor-based hardware virtualization, but instead, im-
plements these concepts at user-level, to be able to run on today’s
large-scale cluster machines hosted by standard Linux operating
systems.

2.1 Assembly Mappings

Logical representations of physical GPGPUs within a cluster
slice are accomplished using the notion of a virtual GPGPU or
vGPU. Together with an enumeration of CPU resources and a reser-
vation of host memory they collectively form the /ogical hardware
platform. The slicing runtime’s current implementation classifies
vGPUs as either local or remote based on whether a single node
hosts both the physical GPGPU and the host application thread.
Applications are not made aware of this classification as the use of
an assembly is transparent, enabling applications to program vG-
PUs in the same manner as without an assembly. An assembly’s
composition is determined at runtime, immediately followed by the
first instantiations of each vGPU’s mapping to their physical coun-
terparts in the cluster. Applications may ‘release’ a GPGPU by
cleaning up resources it allocated, enabling an assembly to dynam-
ically reattach vGPUs to others within the cluster.!

Figure 1 illustrates three alternative mappings for an assembly
configured with two vGPUs and two general purpose cores. The
first mapping is implemented using local GPGPUs for a latency-
sensitive application; the second one uses non-local GPGPUs to
accommodate throughput-sensitive application requiring more than
the two GPGPUs that a node could offer, or where local resources
were not available; a third includes the use of more than one node
as influenced by active monitoring to better utilize node resources.
The benefits derived from such flexibility are that (1) applications
can scale beyond the statically configured nodes’ physical limita-
tions, (2) there is added opportunity for efficiency in resource allo-
cation when mapping parallel workloads to cluster hardware, and

THPC codes typically do not release GPGPU resources until their
computation has completed.
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Figure 2: System throughput measurements comparing a standard backfill
technique with two scenarios for forming GPGPU Assemblies, one consid-
ering application behaviors and sensitivities, and the other not. The exper-
iment assumes a continuous arrival of three HPC applications on a shared
cluster (LAMMPS, NAS-LU and SHOC/S3D) across two separate cluster
sizes on the ORNL Keeneland Initial Delivery System (KIDS).

(3) applications become more portable, as GPGPU Assemblies can
be used to adapt the hardware mapping to match what applications
expect. We show some concrete configurations in Section 5.

Applications using GPGPU Assemblies may be single- or multi-
threaded, composed of multiple processes, and they can span mul-
tiple nodes, as is the case with MPI-based cluster codes [38]. Given
their typically diverse needs, criteria for assembly formation can be
varied to match different application expectations, workload char-
acteristics, and desired levels of cluster utilization. A contribution
of our research is the runtime support needed to enable flexible as-
sembly formation and use, described next.

2.2 Performance and Interference Assessment

For flexibility and accuracy in assessing the utility of an assem-
bly to its application and the potential effects of its hardware slicing
on other codes, we offer explicit support for assembly profiling and
monitoring. (1) Inspection and tracking of an application’s CUDA
call history is used to construct an accelerator profile, which intu-
itively, describes how an application uses GPGPUs. The analysis is
performed offline, with data gathered via our CUDA library inter-
poser observing CUDA calls and marshaled RPC invocations from
an application run using a vGPU. As functions and their arguments
are marshaled for transport, their properties are recorded in mem-
ory and provided in a history file for further processing. As part
of future work, we will include (2) additional capture and use of
system-level performance data from Linux (e.g., CPU utilization
and memory usage) as well as additional user-programmable GP-
GPU instrumentation [12]. Both will jointly serve to maintain a
dynamic assembly profile. This paper focuses on offline analysis of
the CUDA API used by an application to define such a profile. This
profile may later also include an assembly’s use of other shared re-
sources, such as CPU memory, GPGPU memory, and the cluster
interconnect. (3) Finally, such profile data is used to assess an ap-
plication’s ability to use remote GPGPUs, which we term a sensi-
tivity model, described further in Section 3.

Dynamic tracking and maintenance. Application behavior may
change over time, e.g., due to multiple distinct execution phases.
Like other high-end codes, LAMMPS [38], a molecular dynamics
simulator used in our experiments, for instance, alternates between
a compute intensive GPGPU phase and an 10 intensive check-point-
ing phase. The runtime can adjust to such changes by re-evaluating,
at runtime, the mappings of vGPUs to GPGPUs. Potentially large
GPGPU-resident application state, however, prompts us to confine
such changes to situations in which application processes terminate
and/or explicitly release (or re-acquire) GPGPUs.

High-performance execution on well-utilized systems. The
principal case for GPGPU Assemblies explored in this paper is to
demonstrate the utility and efficiency afforded via slice manage-
ment of heterogeneous cluster hardware and to identify insights at-
tained from applications using them, via experiments illustrating
gains in application scalability and increasing levels of system uti-

lization and throughput guided by an application-specific accelera-
tor sensitivity model. As shown in Figure 2, GPGPU Assemblies
enable concurrent execution of three high-performance codes, with
measurements demonstrating a sustained increase of up to 5x in
system throughput on a cluster of 72 nodes — utilizing a total of 828
CPUs and 144 GPGPUs — when mapping hardware slices assigned
to multiple CPU- and GPGPU-configured codes onto overlapping
cluster nodes. This high utilization of cluster resources is obtained
without compromising the performances of each code being run
as application profiles guide the composition of hardware to meet
their needs for scale and for (low) levels of perturbation. Addi-
tional results in Section 5 show improved performance for codes
like SHOC/S3D and demonstrate the efficiacy of GPGPU Assem-
blies to enable at-scale studies of such shared application environ-
ments, providing insights into application behaviors which increase
the exploitation of heterogeneous clusters.

GPGPU Assemblies use sophisticated GPGPU-resident monitor-
ing to assess potential differences in how well GPGPU resources
are used for locally vs. remotely accessed GPGPUs and in addi-
tion, to inform programmers about the efficiencies of GPGPU and
CPU resource usage in their applications. Such insights can be used
by application developers to assist the runtime by classifying their
application kernels into categories indicating the utility of GPGPU
remoting, e.g., by disabling remoting for certain application kernels
due to their latency sensitive nature. The following sections discuss
principles governing the effective use of GPGPU Assemblies, both
at the application and hardware layer, and metrics enabling the run-
time to characterize workloads according to these guidelines.

3. APPLICATION PROFILES

In composing an assembly for an application, it is important
to understand the application’s behavior and expectations, such as
those pertaining to its GPGPU performance, so that it can be deter-
mined whether it’s suitable for mapping to an assembly consisting
not of tightly coupled, on-node GPU accelerators, but of remote
ones instead. Accomplishing these goals requires understanding
the impact of a heterogeneous environment on the various elements
comprising high-performance GPGPU codes. We apply the afore-
mentioned profiles and sensitivity model for these purposes.

Accelerator Applications. Typical accelerator applications are
written with host and accelerator portions intended for execution
on two different classes of processors resident on nodes: general-
purpose host CPUs and GPGPUs. The host portion is responsible
for making the supported GPGPU runtime calls for programming
the GPGPU: initiating data transfers between the two disjoint mem-
ory subsystems, synchronization, launching computational kernels,
and to execute any other required host-only computations. Thus, a
GPGPU alone is insufficient to initiate compute kernels. Additional
resources required to configure the state of the GPGPU include
available CPU, memory, and interconnect bandwidth (e.g. PCle
and/or some internode fabric). Such constraints must be taken into
account when forming a GPGPU Assembly and determining how
assemblies can share the underlying hardware resources.

Accelerator Profiles. As GPGPUs are not (yet) first-class citi-
zens, they do not have arbitrary access to system memory, the CPU
cache, or the network. Application codes, therefore, must explic-
ity program the movement of data and control between the host
and GPGPU environments. The frequency at which the network
is accessed, for one, is directly correlated to a code’s remoting
sensitivity, further influenced by both network latency and band-
width. Additionally, the degree to which an application utilizes a
network’s capacity suggests a greater influence from perturbation
effects when that resource is shared. Given the ability of our run-
time to transparently map vGPUs to GPGPUs on any node within
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the cluster, we represent this sensitivity via an accelerator profile,
or o-profile for short:

o={S,n}
where n represents the total count of GPGPUs assigned to an ap-
plication’s slice, and S the value of our sensitivity metric, defined
below, describing the application’s relationship with GPGPU re-
sources.

Sensitivity Model. When accessing GPGPUs, application per-
formance depends not only on physical network properties, but also
on how it accesses GPGPUs, including the frequency of access, in-
herent “access” costs, the amount of data moved with each access,
whether data transfers can be overlapped with application compu-
tation (i.e., whether communication is blocking), and finally, cur-
rently available network bandwidth—specifically considering the
network is a shared resource. An application’s use of a GPGPU
Assembly enables us to extract these characteristics. Each use of
the network is represented by a message, characterized with a size
in megabits, transmit latency in seconds, and time stamp indicat-
ing when it was made available for transmission on the network.
Across an application’s entire execution we bin these messages,
e.g., into intervals of one second (Figure 3). For each bin b, we
compute S, consisting of two properties: (i) an estimation of band-
width utilization and (ii) a sum of latencies contributed by each
message

sizep 1
= - — +del 1
leny, W +delay), M

where W is the maximum bandwidth (mbps) afforded by the net-
work fabric, size the sum of message sizes, len the interval length,
e.g., half a second, and delay the total time spent blocking on each
message; asynchronous messages do not contribute to delay as we
assume perfect overlap of transmission with progress. An appli-
cation’s consequent ‘sensitivity’ to using remote accelerators, S, is
then calculated via the mean of all S,

1N
S:—ES 2
Nb:]b @

where N is the total number of bins.

Both components in S}, represent different and important char-
acteristics of the application with respect to its use of the GPGPU.
Incorporating a component representing time spent waiting by an
application, delay,, gives a direct indication of an application’s
sensitivity to changes in the physical network, e.g., using PCle vs
Ethernet—larger delays mean larger sensitivity, and thus greater
overhead. Inclusion of a measure of bandwidth utilization gives an
indication of an application’s sensitivity to shared use of a network,
e.g., with utilization of 90% an application would not only have a
higher chance of experiencing slowdowns from the shared use of
that network, but also potentially also experience greater perturba-
tion effects, resulting in further overheads.

Providing one value for S in an application’s a-profile (e.g. as
opposed to n values of S, one per GPGPU) assumes meaningful dif-
ferences in access characteristics among all GPGPUs used by the
application are negligible. Furthermore, defining S as an average
makes the assumption that the access characteristics of an appli-
cation with respect to a given GPGPU does not exhibit significant
changes over time. We provide the definitions as above based on

our observations that, for applications we examined in this study,
variances in such characteristics were negligible.

Furthermore, in this work, we do not yet consider the different
types of traffic seen on the interconnect, including application-level
communications vs. those due to remote GPGPU access, and the
control communication used by assemblies.

Application Model. = We define the resources needed by an
application as a compute profile

p = {cpu.n,cpu.act,M,a}

where cpu.n represents a count of CPUs required by the applica-
tion, cpu.act the CPU “activity’ coarsely defined as an average level
of utilization of those specific CPUs with a value between zero and
one, M represents the amount of host memory required per CPU
and o the accelerator profile. Defining an application based on this
set of metrics forms a basis for constructing an assembly for the
application by identifying specific resources in the heterogeneous
cluster at the time of the request. The use of these models will pro-
vide future cluster schedulers or assembly specific runtime man-
agers with sufficient information to make decisions regarding GP-
GPU Assembly formation, and static as well as dynamic changes to
mappings. Our current work uses the application profiles and sensi-
tivity metric to determine suitable assembly configurations a-priori,
offline.

4. IMPLEMENTATION

Cluster hardware slicing is implemented with a distributed run-
time developed for heterogeneous GPGPU-based high-performance
clusters, such as the XSEDE Keeneland (KIDS) supercomputer
used in our experimental evaluations. The runtime’s primary com-
ponent is a distributed collection of stateful, persistent demon pro-
cesses with each node hosting one instance. Collectively, the de-
mon processes maintain monitoring information and service re-
quests for assemblies from applications, with one process desig-
nated as the master for responding to GPGPU Assembly requests.

GPGPU Assemblies. The runtime’s interposer library imple-
ments a subset of the CUDA API to enable transparent access and
use of local or remote assembly GPGPUs. Upon the first inter-
posed CUDA function invocation, the library communicates with
the local demon to request an assembly, carrying with it informa-
tion about the application such as that captured by the application
profile, which in turn forwards the request to the master. The mas-
ter uses information about unmapped CPUs and GPGPUs together
with application profiles to locate available resources to compose
an assembly, which is sent back to the originating node. Once re-
ceived, the library immediately maps the assembly onto the clus-
ter: network links are instantiated for any remote vGPUs provided;
CPUs required to host the remote paths are reserved on the desti-
nation nodes. Application execution resumes and subsequent func-
tion invocations are intercepted and either passed through to the
CUDA library (for local vGPUs) or are marshaled and enqueued
into a memory region associated with a specific vGPU, and are fi-
nally sent over the network to the vGPU’s physical counterpart for
unmarshaling and execution. Demons spawn a thread for each in-
coming remote VGPU connection to, which are then responsible
for umarshaling and executing each RPC, passing it through to the
CUDA library. CUDA applications configure themselves for a host
machine by first querying for the number of GPGPUs available.
When a GPGPU Assembly is assigned the application, the response
to this query is the number of vGPUs the runtime has created in the
assembly, where zero or more vGPUs can be assigned to the same
physical GPGPU. To maintain compatibility, vGPUs are assigned
numbers in the contiguous range 0-N.

Network Optimizations. Two optimizations for the data-path
of remote vGPU mappings are RPC batching and batch pipelining,



and rely on identifying each function in the CUDA API as either
synchronous or asynchronous. The latter are queued into a batch to
reduce accumulation of setup costs associated with transmissions.
Flushes are invoked either when batch queues are full or a syn-
chronous call is encountered. These optimizations are examined
further in Section 5.

Profiles. Once a GPGPU Assembly is mapped, the batching
subsystem can be configured to record a history of information per-
taining to all batches, headers, and return state that are sent across
a vGPU data path. For each, the following information is recorded:
a time-stamp, size in bytes, and for blocking batches a total latency
(time spent executing on the remote GPGPU is subtracted from the
sender’s measurements). This data is fed into a script which per-
forms message binning and sensitivity calculations. CPU activity
is measured with standard tools such as top.

5. EVALUATION

We present a study on the efficiacy of slices for provisioning re-
sources on hetergeneous clusters in environments of one or more
regularly behaving high-performance codes. Scenarios are con-
structed for demonstrating the abilities of GPGPU Assemblies to:
(1) efficiently provide resources for applications with increasing
computational demands, designated as ‘scale-out’ experiments; (2)
identify specific application characteristics which enable adapta-
tion to the flexibility afforded by GPGPU Assemblies, leveraging
accelerator profiles and our sensitivity models described earlier in
Section 3; and (3) enable applications with slices mapped to over-
laping computational nodes at large scales up to 72 nodes to expe-
rience reduced perturbation and increased cluster throughput, as-
sisted by insights from (2).

Platform. All applications are run on the 120-node XSEDE
Keeneland Initial Delivery System (‘KIDS’) [22] [45]. Every node
is configured with two six-core Intel Xeon (Westmere) X5660 2.8
GHz CPUs, 24 GiB of main memory, three NVIDIA Tesla (Fermi)
M2090 GPGPUs, and a Mellanox QDR InfiniBand card. CentOS
6.2 hosts the environment, providing CUDA SDK v3.2 through
v5.0.

Applications. Applications presented in this evaluation were
chosen to represent the types of codes commonly executed in HPC
environments to obtain a realistic sense of the capabilities of GP-
GPU Assemblies: LAMMPS [38], NAS-LU [35], and an S3D chem-
ical reaction simulation kernel provided in the SHOC [10] bench-
mark suite. LAMMPS is a classical molecular dynamics simula-
tor, dividing a 3-D space of atoms among a grid of MPI ranks.
Input scripts define the simulation characteristics, such as melt-
ing metals, providing diverse runtime characteristics, e.g., use of
the GPGPU (USER-CUDA backend) or CPU, or varying memory
footprints. Our observations show LAMMPS, despite various con-
figurations, to behave fairly regularly. NAS-LU is an implemen-
tation of NASA’s Lower-Upper Gauss-Seidel solver for GPGPUs
using a hybrid of MPI and CUDA. It was developed to compute
on three different ‘classes’ of problem sizes (A, B, C in increasing
complexity). SHOC/S3D is a weakly scalable code and is config-
urable with four discrete input sizes?, and the number of iterations
the main kernel is launched. MatrixMul from the CUDA SDK is a
throughput-sensitive data-parallel processing code, allocating three
host- and GPGPU-resident matrices, sending two to the device for
multiplication, then receiving the result matrix into host memory.
Varying input sizes enables stressing the CPU/GPGPU data-path
within the runtime.

2SHOC documentation states problem category ‘4’ used in our
evaluation is intended to represent “HPC-Focused or Large Mem-
ory GPGPUs”.

Profiles. An examination of an application’s GPGPU access be-
haviors — its accelerator profile — can shed light onto its resource
requirements and behavioral patterns. As discussed in Section 4,
a profile is calculated from a recording of messages (batches of
CUDA API RPCs) sent between an application using a vGPU and
the physical GPGPU counterpart via instrumentation of the batch-
ing layer within a GPGPU Assembly. Presenting this sensitivity
metric to the runtime upon application launch enables it to guage
the extent of the flexibility it can afford for a specific application
when composing a GPGPU Assembly. Specific values within each
application’s profile are shown in Figure 4.

Code p = (cpu.n,cpu.act,M) o (accelerator profile)

LMP,p, (648, 1, 2.3Gb) cpu backend
NAS-LU (6, 0.9, 3.7Gb) (0.14, 6)
SHOC/S3D (36, 0.05, 3.8Gb) (0.0486, 36)

Figure 4: Profiles for each application as configured for the experiment in
Section 5.2.

NAS-LU. Figures 5(a) and 5(c) illustrate an isolated experiment
with NAS-LU using a single vGPU. An increase in the overall prob-
lem size corresponded to a decrease in the sensitivity, explained by
an overall growth in the size of RPC messages and more time spent
waiting for the GPGPU to complete each computation. Larger mes-
sages enable more efficient use of the network’s bandwidth; more
time spent waiting on the GPGPU means a reduced exposure to
elements on the network. Its sensitivity showed very little varia-
tion across execution (except at initialization). Measurements with
UNIX utility top shows NAS-LU to exhibit relatively high CPU
utilization, suggesting additional host-side computations are per-
formed in addition to GPGPU computations.

SHOC/S3D. Configured with the largest problem size category
and 1200 kernel invocations, SHOC/S3D exhibits lower sensitivity
to remote GPGPUs than NAS-LU, but similarly with little variation
throughout execution (Figure 5(b)). Measurements show SHOC/S3D
to have nearly negligible CPU requirements, as the code performs
the bulk of its computations on the GPGPU.

LAMMPS. We evaluated the GPGPU backend of LAMMPS
in ‘scale-out’ experiments, and the CPU backend in our at-scale
performance study (Section 5.2). Measurements show the GPGPU
backend to have significant CPU utilization and a reduced capa-
bility to leverage the flexibilities of a GPGPU Assembly, indicated
by our calculations of its GPGPU sensitivity (omitted for brevity).
Execution of the CPU backend exhibited full use of available CPU
resources, as expected.

5.1 Application Growth

Application growth on clusters can be achieved by spawning ad-
ditional ranks, spilling to other nodes when local resources are ex-
hausted. GPGPU Assemblies can provide for such growth dynam-
ically by searching for and ‘borrowing’ available GPGPUs found
throughout the cluster, establishing an efficient data path over the
interconnect, and presenting a different logical view of the cluster.

Figure 6(a) compares the throughput of LAMMPS with and with-
out an assembly up to ten GPGPUs. As the problem size grows,
more ranks are created. Beyond three GPGPUs, the MPI runtime
spreads ranks across the cluster. With an assembly, all ranks re-
main on the same node, using an efficient data path established by
the assembly to access remote GPGPUs. At ten GPGPUs, perfor-
mance differs by 13.5%, an overhead attributed to increasing pres-
sure from the additional ranks on CPU resources (e.g. the cache),
and its sensitivity to use of the network, compounded with each
additional GPGPU. In contrast, SHOC/S3D scales near linearly up
to 111 GPGPUs — 111 ranks on the same node — due to low CPU
resource needs and extremely low GPGPU sensitivity.

Insights. CPU utilization must not be ignored when altering
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a GPGPU Assembly to accomodate changes in application needs,
as it may diminish the ability of an application to drive ‘borrowed’
GPGPU s across the cluster, both locally and on remote nodes.

5.2  Multi-Slice Provisioning

Challenges in managing large-scale heterogeneous systems in-
clude the ability to (1) transparently express and maintain logical
resource provisions for applications and (2) provide flexible envi-
ronments in which to study them. We next present a scenario with
multiple HPC GPGPU codes using cluster slices to provision re-
sources and study the importance of application profiles in their
construction.

In this experiment we consider a scenario providing an opportu-
nity to make different decisions for composing GPGPU Assemblies
for individual applications in a shared environment. The first trial
does not consider our application profiles and the second does. Our
goal is to show that both scenarios are made possible using slices,
and that we can draw insights using knowledge obtained from our
application profiles to explain our measurements. We evaluate the
following large-input configurations of the applications on two sep-
arate cluster sizes of 48 and 72 nodes each (Figure 9). Figure 8
illustrates the various GPGPU Assemblies created for each appli-
cation and their slice for both trials considered. Figures 2 and 7
present the measured system throughputs for both trials and cluster
sizes, and the measured execution times across assembly configu-
rations.

The first two measurements (left-most tic marks) for each ap-
plication in Figure 7 illustrate baseline performances: one as we
might expect to launch the application — ‘filling’ each node — and

Profile-Guided Slice
Formation

Unguided Slice
Formation

]

NAS' NAS [ NAS

First 24 Nodes
Slice Runtime
LAMMPS

Second 24 Nodes
Slice Runtime
LAMMPS

NAS

Pelr-node Stackilng Pelr-node Stackilng
Figure 8: Configuration of experiment for applications described both in the
text as well as in Figure 7, for 48 nodes; on 72 nodes additional NAS-LU
instances exist, and SHOC/S3D and LAMMPS request more ranks. LAM-
MPS is given an assembly which alters its rank-to-node placement such
that 8 ranks/node exist on the first N/2 nodes, and 10/node on the second
half. For NAS-LU and SHOC/S3D, assembly vGPUs map to unique remote
nodes, always on the latter N/2 nodes. ‘Per-node stacking’ illustrates the
overlap between application and runtime-related instances on shared nodes.

Code Configuration Ranks
LMP,py ‘eam’ simul. 536M atoms 432, 648
NAS-LU  problem size ‘C’ 6,6

SHOC/S3D  problem size ‘4’ 1.2k iters 24, 36

Figure 9: Configuration of apps in shared-slice provisioning scenario.
Ranks listed are for 48 and 72 nodes respectively.

another which facilitates better co-placement with other codes on
the cluster for the purposes of this experiment. For GPGPU codes,
the third measurement illustrates how sensitive a code is to use of
remote GPGPUs: 11.7% and 5.5% for SHOC/S3D on 48 and 72
nodes respectively, and 67.2% for NAS-LU. Our measured sensi-
tivity metric matches this behavior (Figure 5).

Naive mappings of each assembly, such as those in the unguided
trial, present pronounced effects on the performances of LAMMPS
and the majority of NAS-LU instances launched. With examina-
tion of their profiles (Figure 4) we assert that the overheads for the
NAS-LU instances, which were assigned remote GPGPUs, experi-
enced perturbation from both (1) exposure to the use of the cluster
network, as suggested by the GPGPU sensitivity, and that (2) a sig-
nificant enough amount of contention on CPU resources existed on
nodes where there was substantial overlap of slices chosen for both
applications; both LAMMPS and NAS-LU have a high measured
CPU utilization.

As assembly mappings are transparent to applications, we al-
ter them for the second trial, guided by our application profiles.
When the applications are launched, the profiles are provided to
our runtime which directly compares the sensitivity values when
prioritizing applications chosen for remote GPGPU assignment.
SHOC/S3D’s low GPGPU sensitivity suggests it is the better candi-
date which can adapt to the flexibility of an assembly. All NAS-LU
instances which were using remote-GPGPU assemblies are mapped
locally, and SHOC/S3D is scaled across all nodes. Codes which
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Figure 7: Effects on application execution times on a shared cluster when the formation of GPGPU Assemblies considers application profiles (‘Guided’) and
when not (‘Unguided’). Experiment ran separately on 48 and 72 nodes. n/nd signifies n ranks launched per node and n+ m/nd with n/nd launched on the
first half of nodes, m/nd on the remainder. Guided and Unguided signify the configuration and trial in which the application executed; see Figure 8. A single
asterisk “*’ signifies that configuration was selected for the Unguided trial; a double asterisk “**’ signifies the same but for Guided. An ‘r’ or ‘L’ suffixed to
Unguided signifies the assembly configuration providing remote or local GPGPUs for that trial. Figure 2 compares the measured system throughput across
both scenarios with a standard backfill approach for applications configured as 12/node and 3/node.

have high measured CPU utilization now have sufficient CPU re-
sources for computation and GPGPU management, and no code
is subject to the network which cannot afford it. Measurements
show the new mappings to have reduced perturbation for all codes,
shown in Figure 7, and increased overall system throughput, shown
in Figure 2.

Insights.  Our runtime is able to efficiently compose slices
at-scale for studying shared application environments on heteroge-
neous clusters, and an understanding of application characteristics
is vital to the composition of slices, e.g. for identifying possible
points of resource contention.

5.3 Data Path Efficiency

Diving into the lower layers of the runtime system, this section
discusses the efficiency of the data paths provided by vGPUs to
applications, using standard CUDA SDK microbenchmarks.

RPC Batching. Hosting more complex and longer-running
codes requires analysis of additional costs and optimizations avail-
able on the network when implementing remote vGPU mappings.
With the sheer number of RPCs generated by LAMMPS and NAS-
LU, sending each individually greatly compounds network costs.
Two techniques are used in our work, batching and message pipelin-
ing. An experiment illustrating their effects is shown in Figure 6(c).

Latency Analysis. We ran MatrixMul on a single remote vGPU
to identify which components in our runtime implementation con-
tributed the most to each individual RPC created. Results (omitted
for brevity) show the largest contributor to RPC latencies are due
to the NVIDIA library, e.g. waiting on GPGPU computations, fol-
lowed by network transfer operations. Main memory bandwidths
were observed to be great enough to provide low overhead within
the marshaling routines.

Insights. Network optimizations lead to the greatest initial per-
formance improvements in individual remote GPGPU mappings.

5.4 Summary

Diversity in applications’ use of high-performance clusters may
be mismatched with the physical configurations present in modern
cluster infrastructures. There is much opportunity to investigate the
way applications are configured, how they use the hardware given
to them, and what assumptions they make to provide for potentially
better configurations. The experiments described in this paper show
assemblies can be used to study such environments, and be used to
construct effcient mappings to cluster slices.

6. RELATED WORK

Early adoption of GPGPUs gave rise to research questions ask-

ing how to efficiently virtualize the accelerator to be able to access
these accelerators, either by punching through virtualization layers
or by transporting messages across the network. Initial work was
focused in the context of hypervisors efficiently exposing GPG-
PUs to guest virtual machines, such as VMGL [26], GViM [16],
vCUDA [42], gVirtuS [14], and rCUDA [11] all of which utilize
API interposition, passing marshaled communications through lo-
cal sockets or hypervisor-assisted shared memory. This technique
was later adopted by user-space middleware systems, such as the
work presented in this paper, in addition to VOCL [46], and MO-
SIX [5]. Our runtime leverages the insights gained from the afore-
mentioned research in its development to construct efficient GP-
GPU Assemblies for the slices it assigns applications in large-scale
heterogeneous clusters, such as consideration of online networking
optimization techniques and use of lower-level communication lay-
ers (e.g. SDP RDMA operations vs MPI), as well as adopting the
ability to permit seamless execution of unmodified applications in
an assembly composed of both local and remote GPGPUs.

Additional research in middleware solutions focuses on increas-
ing programmability as well as the development of unified plat-
forms for task scheduling on single nodes consisting of CPUs and
GPGPUs, leveraging knowledge from the application, e.g. data de-
pendencies gleaned from source annotations. These include libWa-
ter [15], StarPU [4], and others [37] [33] [8], as well as research
suggesting the operating system—not middleware—should man-
age the accelerator [34] [40] [21] [20]. Such research efforts may
enhance the efficiency of a GPGPU Assembly mapped to a slice,
driven by knowledge captured by our runtime and presented to a
‘node-level” manager in the form of one of the aforementioned sys-
tems, effectively becoming a multi-tier scheduling system, demon-
strated also within Rain [41].

Ideas related to sharing compute nodes among applications and
enabling software-defined machine configurations to improve over-
all throughput and hardware utilization are also discussed in [7]
[39] [19] and [36]. Becchi et al. [7] consider node (and GPU) shar-
ing among concurrent processes and applications, GPGPU virtual-
ization, and offloading to remote GPGPUs, while Ravi et al. [39]
consider the problem of concurrently scheduling applications with
different CPU-GPGPU requirements on heterogeneous nodes. Jim-
énez et al. [19] consider online methods for scheduling applications
sharing a single heterogeneous node. Our runtime is distinct from
all such prior work in taking a step beyond merely demonstrating
the feasibility of GPGPU remoting and software-defined machine
configurations to instead advocate these existing ideas support a
new way of provisioning resources on heterogeneous clusters—
using slices—and a new abstraction that enables studying how ap-
plications can best take advantage of these provisions. We inves-



tigate in detail: (1) trade-offs and opportunities in disaggregating
CPU and GPGPU elements of future HPC machines; (2) the pertur-
bation introduced by mapping multiple slices onto shared resources
that introduce complex interactions; and (3) proposing a sensitiv-
ity analysis to characterize application behavior specifically reflect-
ing the efficiency a GPGPU Assembly will have for a given slice,
providing insights on how to best afford the benefits of software-
defined mappings onto a shared heterogeneous cluster.

Finally, some efforts explore effective intra- or inter-node GPG-
PUs usage based on the message-passing paradigm [3] [28] [44]
[43]. However, they require usage of specific APIs, and thus code
modifications. Our runtime provides a more general approach to
resource sharing, and may exploit such libraries to optimize partic-
ular aspects of resource sharing.

7. CONCLUSIONS AND FUTURE WORK

With the proven utility of heterogeneous computing, there is
a need to provide applications with scalable and seamless solu-
tions for using heterogeneous machine resources. This need is met
by GPGPU Assemblies, which present applications with software-
defined platforms comprised of exactly the cluster and GPU re-
sources they require. Our runtime implements assemblies by trans-
parently running an application’s CUDA requests on local or re-
mote GPUs, driven by metrics that include high application per-
formance and high levels of cluster resource utilization. Exper-
imental evaluations show assemblies to improve levels of cluster
throughput while demonstrating an ability to keep perturbation lev-
els minimal, as well as providing an environment to flexibly adjust
mappings to cluster slices for observing and studying changes in
application behaviors to draw insights into how applications might
better exploit future large-scale high-performance systems.

Future extensions to the runtime include supporting dynamic
assembly reconfiguration — dynamic node ‘discovery’, or manag-
ing the dynamic growth in GPGPU resource needs for more ir-
regularly behaving codes at large scales, such as image- or graph-
processing codes where resource demands are more closely repre-
sented through the characteristics of the data, rather than the size
of the data.
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